By Ewold W Dijk, Ben L. Feringa, Gerard Roelfes (auth.), Thomas R. Ward (eds.)

ISBN-10: 3540877568

ISBN-13: 9783540877561

In order to satisfy the ever-increasing calls for for enantiopure compounds, heteroge- ous, homogeneous and enzymatic catalysis developed independently some time past. even if all 3 ways have yielded industrially workable techniques, the latter are the main generic and will be considered as complementary in lots of respects. regardless of the development in structural, computational and mechanistic reports, in spite of the fact that, up to now there is not any common recipe for the optimization of catalytic techniques. therefore, a trial-and-error strategy is still most important in catalyst discovery and optimization. With the purpose of complementing the well-established fields of homogeneous and enzymatic catalysis, organocatalysis and synthetic metalloenzymes have loved a up to date revival. man made metalloenzymes, that are the point of interest of this e-book, outcome from comb- ing an lively yet unselective organometallic moiety with a macromolecular host. Kaiser and Whitesides recommended the opportunity of growing man made metallo- zymes as in the past because the overdue Nineteen Seventies. although, there has been a frequent trust that proteins and organometallic catalysts have been incompatible with one another. This significantly hampered learn during this zone on the interface among homogeneous and enzymatic catalysis. seeing that 2000, even if, there was a starting to be curiosity within the box of synthetic metalloenzymes for enantioselective catalysis. the present state-of-the-art and the possibility of destiny improvement are p- sented in 5 well-balanced chapters. G. Roelfes, B. Feringa et al. summarize learn counting on DNA as a macromolecular host for enantioselective catalysis.

Show description

Read or Download Bio-inspired catalysts PDF

Similar organic chemistry books

New PDF release: Handbook of Reagents for Organic Synthesis, Chiral Reagents

Derived from the popular, Encyclopedia of Reagents for natural Synthesis (EROS), the similar editors have created a brand new instruction manual which makes a speciality of chiral reagents utilized in uneven synthesis and is designed for the chemist on the bench. This new guide follows an identical layout because the Encyclopedia, together with an creation and an alphabetical association of the reagents.

Extra resources for Bio-inspired catalysts

Example text

59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. W. Dijk et al. Ota N, Warashina M, Hirano K, Hatanaka K, Taira K (1998) Nucleic Acids Res 26:3385 Santoro SW, Joyce GF (1998) Biochemistry 37:13330 Sugimoto N, Okumoto Y, Ohmichi T (1999) J Chem Soc, Perkin Trans 2 1999:1381 Wang Y, Silverman SK (2005a) Angew Chem Int Ed 44:5863 Geyer CR, Sen D (1997) Chem Biol 4:579 Perrin DM, Garestier T, Hélène C (2001) J Am Chem Soc 123:1556 Ting R, Thomas JM, Lermer L, Perrin DM (2004a) Nucleic Acids Res 32:6660 Bittker JA, Phillips KJ, Liu DR (2002) Curr Opin Chem Biol 6:367 Breaker RR (2004) Nature 432:838 Höbartner C, Silverman SK (2007) Biopolymers 87:279 Li Y, Breaker RR (1999a) Curr Opin Struct Biol 9:315 Lu Y (2002) Chem Eur J 8:4588 Peracchi A (2005) ChemBioChem 6:1316 Breaker RR (1997b) Nat Biotechnol 15:427 Breaker RR, Joyce GF (1994) Chem Biol 1:223 Breaker RR, Joyce GF (1995) Chem Biol 2:655 Santoro SW, Joyce GF (1997) Proc Natl Acad Sci USA 94:4262 delCardayré SB, Raines RT (1994) Biochemistry 33:6031 Cruz RPG, Withers JB, Li Y (2004) Chem Biol 11:57 Nowakowski J, Shim PJ, Prasad GS, Stout CD, Joyce GF (1999) Nat Struct Biol 6:151 Zaborowska , Fürste JP, Erdmann VA, Kurreck J (2002) J Biol Chem 277:40617 Zaborowska , Schubert S, Kurreck J, Erdmann VA (2005) FEBS Lett 579:554 Nawrot B, Widera K, Wojcik M, Rebowska B, Nowak G, Stec WJ (2007) FEBS J 274:1062 Peracchi A (2000) J Biol Chem 275:11693 Peracchi A, Bonaccio M, Clerici M (2005) J Mol Biol 352:783 Liu J, Lu Y (2002) J Am Chem Soc 124:15208 Kim H-K, Rasnik I, Liu J, Ha T, Lu Y (2007b) Nat Chem Biol 3:763 Kurreck J, Bieber B, Jahnel R, Erdmann VA (2002) J Biol Chem 277:7099 Lusic H, Young DD, Lively MO, Deiters A (2007) Org Lett 9:1903 Ting R, Lermer L, Perrin DM (2004b) J Am Chem Soc 126:12720 Keiper S, Vyle JS (2006) Angew Chem Int Ed 45:3306 Liu Y, Sen D (2004) J Mol Biol 341:887 Levy M, Ellington AD (2002) Chem Biol 9:417 Mei SHJ, Liu Z, Brennan JD, Li Y (2003) J Am Chem Soc 125:412 Nutiu R, Mei S, Liu Z, Li Y (2004) Pure Appl Chem 76:1547 Achenbach JC, Nutiu R, Li Y (2005a) Anal Chim Acta 534:41 Stojanovic MN, de Prada P, Landry DW (2001) ChemBioChem 2:411 Wang DY, Sen D (2001) J Mol Biol 310:723 Wang DY, Lai BHY, Feldman AR, Sen D (2002a) Nucleic Acids Res 30:1735 Silverman SK (2005) Nucleic Acids Res 33:6151 Achenbach JC, Chiuman W, Cruz RPG, Li Y (2004) Curr Pharm Biotech 5:321 Isaka Y (2007) Curr Opin Mol Ther 9:132 Li J, Zheng W, Kwon AH, Lu Y (2000) Nucleic Acids Res 28:481 Li J, Lu Y (2000) J Am Chem Soc 122:10466 Liu J, Lu Y (2007) J Am Chem Soc 129:9838 Liu J, Lu Y (2003) J Am Chem Soc 125:6642 Liu J, Lu Y (2004b) Chem Mater 16:3231 Liu J, Lu Y (2004d) Anal Chem 76:1627 Liu J, Lu Y (2004a) J Fluoresc 14:343 Liu J, Lu Y (2004c) J Am Chem Soc 126:12298 Liu J, Lu Y (2006) Org Biomol Chem 4:3435 Lederman H, Macdonald J, Stefanovic D, Stojanovic MN (2006) Biochemistry 45:1194 Stojanovic MN, Stefanovic D (2003) J Am Chem Soc 125:6673 Stojanovic MN, Mitchell TE, Stefanovic D (2002) J Am Chem Soc 124:3555 Chen Y, Wang M, Mao C (2004) Angew Chem Int Ed 43:3554 DNA in Metal Catalysis 72.

Avidin shows a very strong affinity to biotin with a Ka of approximately 1015 M−1 (Fig. 1c). The affinity of avidin for biotin can be utilized to introduce metal complexes into the avidin cavity by a covalent bond with biotin. In fact, hybrids of avidin and biotin conjugated with Rh diphosphine and Ru diamine moieties have been shown to allow asymmetric hydrogenations of olefin and ketone substrates [8, 25, 26]. 28 S. Abe et al. Fig. 1 Ribbon diagrams of protein architectures: a lysozyme, b serum albumin, c avidin, d myoglobin, and e ferritin taken from PDB ID: 2VB1, 1BJ5, 1AVD, 4MBN, and 1DAT, respectively Myoglobin (Mb) is a small hemoprotein that functions as an oxygen storage, and has been used as a model for many heme enzymes by modifying the heme prosthetic group and/or replacing some amino acids near the heme (Fig.

90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 23 Tian Y, He Y, Chen Y, Yin P, Mao C (2005) Angew Chem Int Ed 44:4355 Carmi N, Shultz LA, Breaker RR (1996) Chem Biol 3:1039 Carmi N, Breaker RR (2001) Bioorg Med Chem 9:2589 Carmi N, Balkhi SR, Breaker RR (1998) Proc Natl Acad Sci USA 95:2233 Cuenoud B, Szostak JW (1995) Nature 375:611 Silverman AP, Kool ET (2006) Chem Rev 106:3775 Levy M, Ellington AD (2001) Bioorg Med Chem 9:2581 Li Y, Breaker RR (2001) Methods 23:179 Sreedhara A, Li Y, Breaker RR (2004) J Am Chem Soc 126:3454 Silverman SK (2004) Org Biomol Chem 2:2701 Flynn-Charlebois A, Wang Y, Prior TK, Rashid I, Hoadley KA, Coppins RL, Wolf AC, Silverman SK (2003a) J Am Chem Soc 125:2444 Flynn-Charlebois A, Prior TK, Hoadley KA, Silverman SK (2003b) J Am Chem Soc 125:5346 Ricca BL, Wolf AC, Silverman SK (2003) J Mol Biol 330:1015 Wang Y, Silverman SK (2003) J Am Chem Soc 125:6880 Purtha WE, Coppins RL, Smalley MK, Silverman SK (2005) J Am Chem Soc 127:13124 Wang Y, Silverman SK (2005b) Biochemistry 44:3017 Coppins RL, Silverman SK (2004) J Am Chem Soc 126:16426 Achenbach JC, Jeffries GA, McManus SA, Billen LP, Li Y (2005b) Biochemistry 44:3765 Li Y, Breaker RR (1999b) Proc Natl Acad Sci USA 96:2746 McManus SA, Li Y (2007) Biochemistry 46:2198 Wang W, Billen LP, Li Y (2002b) Chem Biol 9:507 Li Y, Liu Y, Breaker RR (2000) Biochemistry 39:3106 Sheppard TL, Ordoukhanian P, Joyce GF (2000) Proc Natl Acad Sci USA 97:7802 Baum DA, Silverman SK (2007) Angew Chem Int Ed 46:3502 Li Y, Sen D (1996) Nat Struct Biol 3:743 Travascio P, Li Y, Sen D (1998) Chem Biol 5:505 Cochran AG, Schultz PG (1990) Science 249:781 Li Y, Sen D (1997) Biochemistry 36:5589 Li Y, Sen D (1998) Chem Biol 5:1 Sugimoto N, Toda T, Ohmichi T (1998) Chem Commun 1998:1533 Rojas AM, Gonzalez PA, Antipov E, Klibanov AM (2007) Biotechnol Lett 29:227 Boutorin AS, Vlassov VV, Kazakov SA, Kutiavin IV, Podyminogin MA (1984) FEBS Lett 172:43 Chu BCF, Orgel LE (1985) Proc Natl Acad Sci USA 82:963 Dreyer GB, Dervan PB (1985) Proc Natl Acad Sci USA 82:968 Moser HE, Dervan PB (1987) Science 238:645 Le Doan T, Perrouault L, Hélène C, Chassignol M, Thuong NT (1986) Biochemistry 25:6736 Le Doan T, Perrouault L, Chassignol M, Thuong NT, Hélène C (1987) Nucleic Acids Res 15:8643 Dubey I, Pratviel G, Meunier B (2000) J Chem Soc, Perk Trans 1 2000:3088 Pitié M, Casas C, Lacey CJ, Pratviel G, Bernadou J, Meunier B (1993) Angew Chem Int Ed Engl 32:557 Magda D, Miller RA, Sessler JL, Iverson BL (1994) J Am Chem Soc 116:7439 Magda D, Crofts S, Lin A, Miles D, Wright M, Sessler JL (1997) J Am Chem Soc 119:2293 Bergstrom DE, Gerry NP (1994) J Am Chem Soc 116:12067 Chen C-HB, Sigman D (1986) Proc Natl Acad Sci USA 83:7147 Chen C-HB, Sigman D (1988) J Am Chem Soc 110:6570 François J-C, Saison-Behmoaras T, Chassignol M, Thuong NT, Sun J-S, Hélène C (1988) Biochemistry 27:2272 François J-C, Saison-Behmoaras T, Chassignol M, Thuong NT, Hélène C (1989a) J Biol Chem 264:5891 François J-C, Saison-Behmoaras T, Barbier C, Chassignol M, Thuong NT, Hélène C (1989b) Proc Natl Acad Sci USA 86:9702 Sergeyev DS, Godovikova TS, Zarytova VF (1991) FEBS Lett 280:271 Sergeyev DS, Godovikova TS, Zarytova VF (1995) Nucleic Acids Res 23:4400 Czlapinski JL, Sheppard TL (2004) Chem Commun 2004:2468 24 122.

Download PDF sample

Bio-inspired catalysts by Ewold W Dijk, Ben L. Feringa, Gerard Roelfes (auth.), Thomas R. Ward (eds.)


by Michael
4.2

Rated 4.37 of 5 – based on 20 votes